Annual Land Use and Urban Land Cover: Ethiopia, Nigeria, and South Africa, 2016-2020
This dataset provides a two-tier annual Land Use (LU) and Urban Land Cover (LC) product suite over three African countries, Ethiopia, Nigeria, and South Africa, across a 5-year period of 2016-2020. Remote sensing data sources were used to create 30-m resolution LU maps (Tier-1), which were then utilized to delineate urban boundaries for 10-m resolution LC classes (Tier-2). Random Forest machine learning classifier models were trained on reference data for each tier and country (but one model was trained across all years); models were validated using a separate reference data set for each tier and country. Tier-1 LU maps were based on the 30-m Landsat time series, and Tier-2 urban LC maps were based on the 10-m Sentinel-2 time series. Additional data sources included climate, topography, night-time light, and soils. The overall map accuracy was 65-80% for Tier-1 maps and 60-80% for Tier-2 maps, depending on the year and country. The data are provided in cloud optimized GeoTIFF (COG) format.
Shah Heydari, S. & Vogeler, J. 2024. Annual Land Use and Urban Land Cover maps: Ethiopia, Nigeria, and South Africa 2016-2020. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2367